Building a Rails Engine
from Scratch

Lessons from Active Storage Dashboard and more

RubyConf Thailand - Feb, 1st 2026
Bangkok

Giovanni Panasiti

https://panasiti.me
giovanni@montedelgallo.com

@giovapanasiti

It’s 2026... Why a talk about
engines?
WH

Eight Lessons

Namespace Isolation Scope everything

Engine Config mattr_accessor with smart defaults
The Auth Problem Share auth with the host app
Multi-DB Queries SQLite, MySQL, PostgreSQL, Oracle - all of them

Version Compatibility Rails 5.2 through 8.0 in one codebase
Zero-Dependencies No npm. No bundler conflicts.

Service Classes Rake tasks that actually fix things

Filter Classes Testable, composable query objects

Namespace Isolation

Scope everything to your namespace

lib/active_storage_dashboard/engine.rb

class Engine < ::Rails::Engine

isolate_namespace ActiveStorageDashboard

v/ Model Table Name Prefixing

v/ Route Namespace Encapsulation

v Helper Method Scoping

v/ Controller Inheritance Chain

v/ Asset Pipeline Namespacing

Engine Configuration

mattr_accessor with smart defaults

module ActiveStorageDashboard

mattr_accessor :base_controller_class,
default: "::ApplicationController"

def self.base_controller

base_controller_class.constantize
end

end

v/ Store class names as strings, not constants
v/ Use .constantize at runtime, not load time

v Provide sensible defaults that just work

Engine Configuration

mattr_accessor with smart defaults

module EmailClient
class Configuration
attr_accessor :admin_authentication_method,

EmailClient.configure do |config]

:admin_user_class,
:items_per_page,

config.admin_authentication_method = :authenticate_user!
: config.admin_user_class = "AdminUser"
:enable_downloads,

:storage_service config.items_per_page = 50

N config.enable_downloads = false
def initialize
@admin_authentication_method = :authenticate_admin! end
7 noo
end
end

class << self
def configuration
@configuration ||= Configuration.new
end

def configure
yield(configuration)
end
end
end

The Authentication Problem

Share authentication with the host application

config/routes.rb
authenticate :user, -> (user) { user.admin? } do

mount ActiveStorageDashboard::Engine, at: "/active-storage-dashboard"
end

or with devise:
constraints lambda { |req| req.session[:user_id].present? || (req.env['warden'] &&

req.env['warden'].user(:user)) } do
mount ActiveStorageDashboard::Engine, at: "/active-storage-dashboard"

end

The Authentication Problem

Share authentication with the host application

app/controllers/active_storage_dashboard/application_controller.rb
class ApplicationController < ActiveStorageDashboard.base_controller_class.constantize
protect_from_forgery with: :exception

config/initializer/active_storage_dashboard.rb
Rails.application.configure do

config.active_storage_dashboard.base_controller_class = "AdminController"
end

Multi-DB Queries

support SQLite, MySQL, PostgreSQL and Oralce

def json_extract(column, path)
adapter = ActiveRecord::Base.connection.adapter_name.downcase

case adapter
when /sqlite/ then "json_extract(#{column}, '$.#{path}')"
when /mysql/ then "JSON_UNQUOTE(JSON_EXTRACT(#{column}, '$.#{path}'))"

when /postgres/ then "#{column}->>'#{path}'"
when /oracle/ then "JSON_VALUE(#{column}, '$.#{path}')"
end

end

Usage
User.select("id, name, #{json_extract('metadata', 'locale')} AS user_locale")
.where("#{json_extract('metadata', 'locale')} = 2", 'it')

Version Compatibility

Rails 5.2 through 8.0 in one codebase

if blob.respond_to?(:variant_records)
Rails 7+ API
blob.variant_records

if defined?(ActiveStorage::VariantRecord)

Include variant stats

include_variants: true
else

Rails 6 fallback
[]

end

end

Zero-Dependencies

No npm. No bundler conflicts. No gems.

source 'https://rubygems.org'

gemspec

gem 'rails’

Service Classes

Rake tasks that actually fix things

class OrphanCleanupService
def call(dry_run: true)
orphans = find_orphaned_blobs

return orphans if dry_run
orphans.find_each(&:purge_later)
end
end

Testable

Unit test business logic in isolation

Reusable

Call from rake, controller, or
console

Safe

dry_run default prevents accidents

Filter Classes

Testable, composable query objects

class BlobFilter
def initialize(scope, params
gscope, aoparams = scope, [
end

def apply
ascope
.then { filter_by_conter
.then { filter_by_filenc
end
end

class Admin::BlobsController < ApplicationController

def index
ablobs = BlobFilter.new(
ActiveStorage::Blob.all,
filter_params
).apply.page(params|[:page])
end

private
def filter_params

params.permit(:content_type, :filename)
end

end

Design for the host app, not yours.

Thank you!

github.com/giovapanasiti/active _storage dashboard

